Penerapan Metode Weighted Sum Model (WSM) dan Klasifikasi Komentar pada Sistem Pendukung Keputusan Aplikasi MyPertamina Menggunakan Metode Random Forest

Authors

  • Agung Slamet Riyadi Universitas Gunadarma
  • Puja Rahayu Alfarzi Universitas Gunadarma
  • Ire Puspa Wardhani STMIK Jakarta STI&K

:

https://doi.org/10.32409/jikstik.24.3.3886

Keywords:

MyPertamina, comment classification, decision support system, Random Forest, Weighted Sum Model, sentiment analysis, TF-IDF

Abstract

The development of a comment application system from Google Play Store users as a source of information for
application developers in evaluating and improving applications from the findings of weaknesses or deficiencies.
One such application is the MyPertamina application as a digital platform used by the public in making transactions
to buy fuel or other services from Pertamina. The purpose of this study is to build a Decision Support System
(DSS) to be able to classify application user comments by maximizing the Random Forest algorithm, and provide
alternative assessments by applying the Weighted Sum Model (WSM) method based on certain criteria. The first
stage collects various comments from MyPertamina application users, then the second stage carries out text preprocessing namely normalization, tokenization, stopword removal, and stemming. The third stage classifies into
three sentiment categories, namely positive, neutral, and negative using the Random Forest algorithm. After the
classification results are known, the fourth stage continues, namely applying the WSM method to assess or create
a priority scale as an alternative decision, for example starting with improving features in the application or user
areas that are most affected or impacted based on weighted criteria determined from the number of negative
comments, satisfaction levels and urgency of the issue. The testing conducted with the Random Forest
2
classification model yielded an accuracy value of 86%. Furthermore, the dashboard visualization showed that the
inaccurate data category had the highest average value of 0.11. The WSM method was shown to be more effective
in providing recommendations for prioritizing decision-making in a systematic and measurable manner. The
development of this system is expected to help MyPertamina application developers evaluate user feedback more
efficiently and objectively. The usefulness of this research for the company is that the company can understand
user perceptions and will continue to improve service quality, which impacts user satisfaction. Based on the results
of this research, the system can classify comments automatically by implementing the Random Forest Algorithm,
which is capable of providing good performance with an accuracy of > 80%. Management can use this system as
a basis for decision-making for the development of the MyPertamina application, and application developers can
better understand user perceptions automatically and make strategic decisions by processing user comment
databases.

Downloads

Download data is not yet available.

References

Abdul, R., Wawan, R., Yayah, K., Supiana, & Qiqi, Y. Z. (2022). Deep Learning dan Penerapannya dalam Pembelajaran. Jurnal Ilmiah Ilmu Pendidikan, 3258-3267. DOI : https://doi.org/10.54371/jiip.v5i9.805

Aditya, A., Nana, S., & Gifthera, D. (2023). Analisa Klasifikasi Data Harga Handphone Menggunakan Algoritma Random Forest Dengan Optimize Parameter Grid. Jurnal Teknologi Ilmu Komputer, 43-47. DOI: https://doi.org/10.56854/jtik.v1i2.51

Amelia, A., Hayati, L., & Darwis, H. (2024). Analisis Sentimen Masyarakat Terhadap Sistem Pembayaran Mypertamina dengan Metode Random Forest, SVM, dan Naïve Bayes. LINIER: Literatur Informatika dan Komputer, 1(1), 28-44. DOI : https://doi.org/10.33096/linier.v1i1.2269

Andri Nata, Suparmadi (2022), Analisis Sistem Pendukung Keputusan Dengan Model Klasifikasi Berbasis Machine Learning Dalam Penentuan Penerima Program Indonesia Pintar, JSSR Journal of Science And Social Research, Vol 5 No 3, E-ISSN 2615-3262 DOI : https://doi.org/10.54314/jssr.v5i3.1041

Apriani, Hizbu, Z., & Khairan, M. (2021). Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF System penerimaan Mahasiswa Baru pada Kampus Swasta. Jurnal Bumigora Information Technology (BITe), 19-27. DOI : https://doi.org/10.30812/bite.v3i1.1110

Asep, M. R., & Atiqah, M. H. (2024). A Decision Support System Based on The Weighted Sum Model for Determining Priority of Service Improvements in The Travoy Application. AARUS Journal of Engineering and Technology, 59-70. DOI : https://doi.org/10.35877/jetech2675

Brian, A. S., Zakiul, F. J., & Dita, N. (2023).

SEMEVAL 2017 TUGAS 4: ANALISIS SENTIMEN DI TWITTER. Journal of Scientech Researchand Development, 1081-1096. DOI : https://doi.org/10.56670/jsrd.v5i2.299

Cahyo, G. I., Dian, E. R., & Bayu, R. (2023). Analisis Sentimen Data Ulasan PenggunaAplikasi MyPertamina di Indonesia pada Google Play Store menggunakan MetodeRandom Forest. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1131-1139. https://jptiik.ub.ac.id/index.php/jptiik/article/view/12390

Dewi, P. S., Hsni, N., Muhammad, Z., & Nurul, H. (2023). Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin. Jurnal Informasi dan Teknologi, 58-64. DOI : https://doi.org/10.60083/jidt.v5i3.393

Firza, S. (2023). Optimasi Klusterisasi pada Lama Tempo Pekerjaan Berbasis Gradient BoostAlgorithm. Indonesian Journal Of Information Technology, 1-5. https://ojisnu.isnuponorogo.org/index.php/ijitech/article/view/74

Jhoanne, F., & Lena, E. (2020). Sistem Pendukung Keputusan Pemilihan Sekolah Kejuruan dengan Metode Weighted Product dan Weighted Sum Model. Jurnal Teknik Informatika, 186-192. DOI : https://doi.org/10.17605/jtiust.v5i2.926

J. Liu et al.,(2022), “Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high riskfactors and uterine contraction curve,” Arch.Gynecol. Obstet., vol. 306, no. 4, pp. 1015–1025, DOI: 10.1007/s00404-021-06377-0

Kalyani, J. L., Clement, N., Felicia, A. W., Jeson, A. D., Thaddeus, K. A., Wilsen, S., & Rahmi, Y. N. (2023). Penggunaan Bahasa Pemrograman Python Untuk Memvisualisasikan Data Peluang Selamat Dari Kecelakaan Titanic. Jurnal Publikasi Teknik Informatika (JUPTI), 66-79. DOI : https://doi.org/10.55606/jupti.v2i2.1735

Yetri, M. (2020). Sistem Pendukung Keputusan Untuk Menentukan Penerima Bantuan RSRTLH Menggunakan metode Weight Sum Model (WSM) pada Desa Tanjung Garbus 1 Kecamatan Lubuk Pakam. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), 100-109. DOI : https://doi.org/10.53513/jis.v19i1.230

Yopi Hendro Syahputra, Ismawardi Santoso, Zulkifli Lubis (2022) Sistem Pendukung Keputusan Penerimaan Karyawan Terbaik

Menggunakan Metode Weighted Sum Model (WSM), Explorer Journal of Computer Science and Information Technology, Vol 2 No.2 EISSN: 2774-4647, DOI : https://doi.org/10.47065/explorer.v2i2.249

Downloads

Published

13-09-2025

How to Cite

[1]
Riyadi, A.S., Alfarzi, P.R. and Wardhani, I.P.W. 2025. Penerapan Metode Weighted Sum Model (WSM) dan Klasifikasi Komentar pada Sistem Pendukung Keputusan Aplikasi MyPertamina Menggunakan Metode Random Forest. Jurnal Ilmiah Komputasi. 24, 3 (Sep. 2025), 13. DOI:https://doi.org/10.32409/jikstik.24.3.3886.
Abstract View: 0 times