Optimisasi LSTM untuk Prediksi Konsentrasi Kualitas Udara Jakarta menggunakan Cauchy PSO

Authors

  • Athallah Reyhan Pramudita Universitas Esa Unggul
  • Habibullah Akbar Universitas Esa Unggul

:

https://doi.org/10.32409/jikstik.24.3.3869

Abstract

Polusi udara merupakan masalah serius di kota-kota besar, khususnya di Jakarta yang kerap mengalami tingginya konsentrasi partikel debu (PM10). Kadar PM10 yang tinggi dapat berdampak buruk terhadap kesehatan masyarakat serta kualitas lingkungan secara keseluruhan. Penelitian ini mengusulkan model prediksi deret waktu berbasis Long Short-Term Memory (LSTM) yang dioptimasi menggunakan algoritma Cauchy Particle Swarm Optimization (CPSO). Algoritma CPSO digunakan untuk mencari kombinasi hyperparameter terbaik pada model LSTM, sehingga diharapkan dapat meningkatkan akurasi prediksi. Model menggunakan variable PM10, suhu, kelembapan, curah hujan, dan kecepatan angin dari beberapa stasiun pemantauan udara di Jakarta untuk memprediksi nilai PM10 pada 1, 3, dan 7 hari ke depan. Kinerja model dievaluasi berdasarkan Root Mean Square Error (RMSE), Mean Absolute Error (MAE), dan Correlation Coefficient (CC). Hasil eksperimen menunjukkan bahwa model CPSO-LSTM mampu menghasilkan error yang lebih kecil dibandingkan LSTM.

Downloads

Download data is not yet available.

References

R. C. H. Hutauruk, E. Rahmanto, dan M. C. Pancawati, “Variasi Musiman dan Harian PM2.5 di Jakarta Periode 2016–2019,” Jurnal, vol. 1, 2020.

D. S. Soemarko et al., “Linking Jakarta’s Typical Indonesian Urban Context, Air Pollution, and Child Health,” The Open Public Health Journal, vol. 16, no. 1, 2023. [Daring]. Tersedia: https://doi.org/10.2174/18749445-v16-e230831-2023-109

R. H. Virgianto, R. Rivaniputra, N. P. Kinanti, A. H. Saputra, dan A. N. Khoir, “A numerical simulation of PM2.5 concentration using the WRF-Chem model during a high air pollution episode in 2019 in Jakarta, Indonesia,” Int. J. Advances in Applied Sciences, vol. 11, no. 4, pp. 335–344, 2022. [Daring]. Tersedia: https://doi.org/10.11591/ijaas.v11.i4.pp335-344

G. Syuhada et al., “Impacts of Air Pollution on Health and Cost of Illness in Jakarta, Indonesia,” Int. J. Environ. Res. Public Health, vol. 20, no. 4, 2023. [Daring]. Tersedia: https://doi.org/10.3390/ijerph20042916

L. Hu, J. Chen, J. Vaughan, H. Yang, K. Wang, A. Sudjianto, dan V. N. Nair, “Supervised Machine Learning Techniques: An Overview with Applications to Banking Corporate Model Risk,” Wells Fargo, 2020.

I. Cholissodin, J. H. Prastiwi, K. Pinasthika, dan R. Dewantara, “Social Computing to Create Government Public Policy Document Blueprint Draft Based on Social Media Data About Covid-19 Using LSTM and MMR Hybrid Algorithms,” 2021. [Daring]. Tersedia: https://www.researchgate.net/publication/367188883

T. Lattifia, P. W. Buana, N. Kadek, dan D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER–Jurnal Ilmiah Teknologi dan Komputer, vol. 3, no. 1, 2022.

T. Xayasouk, H. M. Lee, dan G. Lee, “Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models,” Sustainability (Switzerland), vol. 12, no. 6, 2020. [Daring]. Tersedia: https://doi.org/10.3390/su12062570

G. Ayu, N. Lestari, N. Dwi, dan A. Mahendra, “Prediksi Kualitas Udara dengan Menggunakan Metode Long Short-Term Memory dan Artificial Neural Network,” 2023.

Y. Karyadi dan H. Santoso, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” 2022.

F. Yasmin et al., “A Hybrid Model for High Precision Time Specific Forecasting of Air Quality Index with Cluster Analysis,” Human-Centric Intelligent Systems, vol. 3, no. 3, pp. 275–295, 2023. [Daring]. Tersedia: https://doi.org/10.1007/s44230-023-00039-x

R. F. Ramadhani, S. S. Prasetiyowati, dan Y. Sibaroni, “Performance Analysis of Air Pollution Classification Prediction Map with Decision Tree and ANN,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 536–543, 2022. [Daring]. Tersedia: https://doi.org/10.47065/josyc.v3i4.2117

N. A. Mustakim, A. Z. Ul-Saufie, W. N. Shaziayani, N. M. Noor, dan S. Mutalib, “Prediction of Daily Air Pollutants Concentration and Air Pollutant Index Using Machine Learning Approach,” Pertanika J. Sci. Technol., vol. 31, no. 1, pp. 123–135, 2023. [Daring]. Tersedia: https://doi.org/10.47836/pjst.31.1.08

L. Zhang et al., “Air quality predictions with a semi-supervised bidirectional LSTM neural network,” Atmospheric Pollution Research, vol. 12, no. 1, pp. 328–339, 2021. [Daring]. Tersedia: https://doi.org/10.1016/j.apr.2020.09.003

C. Guo, G. Liu, dan C. H. Chen, “Air Pollution Concentration Forecast Method Based on the Deep Ensemble Neural Network,” Wireless Communications and Mobile Computing, vol. 2020, 2020. [Daring]. Tersedia: https://doi.org/10.1155/2020/8854649

M. M. Patil, P. M. Rekha, A. Solanki, A. Nayyar, dan B. Qureshi, “Big data analytics using swarm-based long short-term memory for temperature forecasting,” Computers, Materials and Continua, vol. 71, no. 2, pp. 2347–2361, 2022. [Daring]. Tersedia: https://doi.org/10.32604/cmc.2022.021447

Downloads

Published

14-09-2025

How to Cite

[1]
Reyhan, A. and Akbar, H. 2025. Optimisasi LSTM untuk Prediksi Konsentrasi Kualitas Udara Jakarta menggunakan Cauchy PSO. Jurnal Ilmiah Komputasi. 24, 3 (Sep. 2025), 08. DOI:https://doi.org/10.32409/jikstik.24.3.3869.
Abstract View: 0 times