Penerapan Ekstraksi Keypoint Menggunakan Algoritma Scale-Invariant Feature Transform (SIFT) sebagai Dasar Melakukan Registrasi Point Cloud
:
https://doi.org/10.32409/jikstik.19.4.358
Abstract
Registrasi kumpulan titik dari citra (point cloud) merupakan tahap penting pada proses rekonstruksi dalam rangka membangun objek 3 dimensi. Salah satu algoritma yang sering digunakan untuk meregistrasi point cloud adalah Iterative Closest Point (ICP). Keterbatasan Algoritma ICP terletak pada proses pencarian korespondensi dari semua titik pada point cloud untuk menentukan transformasi, yang membutuhkan waktu yang panjang. Tujuan penelitian ini adalah mempersingkat waktu proses dengan melakukan ekstraksi keypoint menggunakan algoritma Scale Invariant Feature Transform (SIFT) sebelum proses registrasi point cloud dengan menggunakan algoritma Iterative Closest Point (ICP). Berdasarkan hasil uji coba menunjukkan bahwa tahap ekstraksi keypoint berhasil mendapatkan jumlah titik yang lebih sedikit sehingga dapat menurunkan waktu proses registrasi sebelumnya. Dengan demikian, dapat disimpulkan bahwa kombinasi algoritma SIFT dan ICP dapat diterapkan untuk registrasi point cloud tanpa mengubah objek asli dari point cloud.Downloads
Download data is not yet available.
Downloads
Published
29-12-2020
How to Cite
[1]
Khairunnisah, R. and ETP, L. 2020. Penerapan Ekstraksi Keypoint Menggunakan Algoritma Scale-Invariant Feature Transform (SIFT) sebagai Dasar Melakukan Registrasi Point Cloud . Jurnal Ilmiah Komputasi. 19, 4 (Dec. 2020), 523–534. DOI:https://doi.org/10.32409/jikstik.19.4.358.
Issue
Section
Sistem Informasi
